Refine Your Search

Topic

Author

Search Results

Technical Paper

Evaluation of Hydraulic Efficiency Using High-Shear Viscosity Fluids

2010-10-25
2010-01-2178
Fossil fuel consumption is a significant factor in terms of both economic and environ-mental impact of on- and off-highway systems. Because fuel consumption can be directly tied to equipment efficiency, gains in efficiency can lead to reduction in operating costs as well as conservation of nonrenewable resources. Fluid performance has a direct effect on the efficiency of a hydraulic system. A procedure has been developed for measuring a fluid's effect on the degree to which mechanical power is efficiently converted to hydraulic power in pumps typical of off-highway applications.
Technical Paper

Development of a Transient-Capable Multi-Cylinder HCCI Engine

2010-04-12
2010-01-1244
Southwest Research Institute, as part of the Clean Diesel IV consortium, built a multi-cylinder HCCI engine that ran in the HCCI combustion mode full-time. The engine was used to develop HCCI fuels, demonstrate the potential operating range of HCCI, and to demonstrate the feasibility of transient control of HCCI. As part of the engine design, a hardware based method of decoupling control of air and EGR was developed and patented [ 1 ]. The system utilized a positive displacement supercharger with a controlled bypass valve for air-flow control, and a high-pressure loop EGR system with variable geometry turbocharger to control the EGR rate. By utilizing the system, the required precision from the air and EGR control in the engine controller was reduced.
Journal Article

Multi-Vehicle Evaluation of Gasoline Additive Packages: A Fourth Generation Protocol for the Assessment of Intake System Deposit Removal

2009-11-02
2009-01-2635
Building on two decades of expertise, a fourth generation fleet test protocol is presented for assessing the response of engine performance to gasoline additive treatment. In this case, the ability of additives to remove pre-existing deposit from the intake systems of port fuel injected vehicles has been examined. The protocol is capable of identifying real benefits under realistic market conditions, isolating fuel performance from other effects thereby allowing a direct comparison between different fuels. It is cost efficient and robust to unplanned incidents. The new protocol has been applied to the development of a candidate fuel additive package for the North American market. A vehicle fleet of 5 quadruplets (5 sets of 4 matched vehicles, each set of a different model) was tested twice, assessing the intake valve clean-up performance of 3 test fuels relative to a control fuel.
Technical Paper

Fuel Economy Benefits of Electric and Hydraulic Off Engine Accessories

2007-04-16
2007-01-0268
This paper will describe the fuel economy benefits that can be obtained when traditionally engine-driven accessories such as water pumps, oil pumps, power steering pumps, radiator cooling fans and air conditioning compressors are decoupled from the engine and are remotely driven and controlled. Simulation results for different vehicle configurations such as heavy duty trucks operated over urban and highway driving cycles and light duty vehicles such as mini vans will be presented. These results will quantify the heavy dependence of fuel economy benefits associated with different types of driving cycles.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
Technical Paper

Latchcam: A Camshaft Integrated 2-Mode Variable Valve Actuation System

2005-04-11
2005-01-0769
This paper describes the concept, analysis and preliminary rig proving of a 2-mode mechanical variable-valve-actuation system, “Latchcam”, designed initially for prototype bucket-tappet overhead-cam applications. The rig-test data allows the prototype Latchcam performance to be compared to a state-of-art 2-mode system in a current cylinder-head application. Some general design implications and issues are reviewed.
Technical Paper

Assessment of Technology Readiness Level of a Carbon Dioxide Reduction Assembly (CRA) for Use on International Space Station

2004-07-19
2004-01-2446
When technologies are traded for incorporation into vehicle systems to support a specific mission scenario, they are often assessed in terms of “Technology Readiness Level” (TRL). TRL is based on three major categories of Core Technology Components, Ancillary Hardware and System Maturity, and Control and Control Integration. This paper describes the Technology Readiness Level assessment of the Carbon Dioxide Reduction Assembly (CRA) for use on the International Space Station. A team comprising of the NASA Johnson Space Center, Marshall Space Flight Center, Southwest Research Institute and Hamilton Sundstrand Space Systems International have been working on various aspects of the CRA to bring its TRL from 4/5 up to 6. This paper describes the work currently being done in the three major categories. Specific details are given on technology development of the Core Technology Components including the reactor, phase separator and CO2 compressor.
Technical Paper

Analyses of the Integration of Carbon Dioxide Removal Assembly, Compressor, Accumulator and Sabatier Carbon Dioxide Reduction Assembly

2004-07-19
2004-01-2496
An analysis model has been developed for analyzing/optimizing the integration of a carbon dioxide removal assembly (CDRA), CO2 compressor, accumulator, and Sabatier CO2 reduction assembly. The integrated model can be used in optimizing compressor sizes, compressor operation logic, water generation from Sabatier, utilization of CO2 from crew metabolic output, and utilization of H2 from oxygen generation assembly. Tests to validate CO2 desorption, recovery, and compression had been conducted in 2002-2003 using CDRA/Simulation compressor set-up at NASA Marshall Space Flight Center (MSFC). An analysis of test data has validated CO2 desorption rate profile, CO2 compressor performance, CO2 recovery and CO2 vacuum vent in the CDRA model. Analysis / optimization of the compressor size and the compressor operation logic for an integrated closed air revitalization system is currently being conducted
Technical Paper

Effects of Engine Operating Conditions on In-Cylinder Air/Fuel Ratio Detection Using a Production Ion Sensing Device

2004-03-08
2004-01-0515
In-cylinder ion sensing through sparkplug electrodes can be used to determine in-cylinder A/F ratio by using a modified production coil-on-plug ignition system having ion sensing capability. The in-cylinder ionization can be characterized by the height of the peak, location of the peak from ignition command and area under the ionization signal curve. The effects of A/F ratio on the in-cylinder ionization can be isolated from other affecting factors by conducting tests on a constant volume combustion device in which the initial pressure and temperature can be well controlled. This results in a parabolic correlation of the ionization characteristics with the mixture equivalence ratio. Additionally the ionization characteristics show strong dependence on engine load and speed. Equivalence ratio characteristics during engine cranking and warm up are investigated, and a method for on-line calibration of ionization detection is discussed.
Technical Paper

42-Volt Electric Air Conditioning System Commissioning and Control for a Class-8 Tractor

2004-03-08
2004-01-1478
The electrification of accessories using a fuel cell as an auxiliary power unit reduces the load on the engine and provides opportunities to increase propulsion performance or reduce engine displacement. The SunLine™ Class 8 tractor electric accessory integration project is a United States Army National Automotive Center (NAC™) initiative in partnership with Cummins Inc., Dynetek™ Industries Ltd., General Dynamics C4 Systems, Acumentrics™ Corporation, Michelin North America, Engineered Machine Products (EMP™), Peterbilt™ Motors Company, Modine™ Manufacturing and Masterflux™. Southwest Research Institute is the technical integration contractor to SunLine™ Services Group. In this paper the SunLine™ tractor electric Air Conditioning (AC) system is described and the installation of components on the tractor is illustrated. The AC system has been designed to retrofit into an existing automotive system and every effort was made to maintain OEM components whenever modifications were made.
Technical Paper

LPG Refueling Technology

2002-10-21
2002-01-2739
A study was performed by Southwest Research Institute™ for the Propane Education and Research Council, under the cooperation and management of the Texas Railroad Commission to study and evaluate current LPG vehicle refueling technology. This study focused on connection systems, over-fill protection, and pumping/dispensing systems. Information was also compiled on the new standard for LPG refueling systems created and adopted by the European Committee for Standardization (CEN). The standard was created to reduce refueling emissions, increase operator safety, and improve the general operation and consumer acceptance level for LPG vehicles. This standard involves the LPG fill nozzle, nozzle receptacle, leakage rates, and pumping systems. This project was conducted in order to establish a firm starting point for the beginning of a standardization process for LPG vehicle refueling in the United States.
Technical Paper

Operability and Compatibility Characteristics of Advanced Technology Diesel Fuels: Pump Evaluations

2002-05-06
2002-01-1675
Two different laboratory fuel-injection-pump durability-tests were conducted with four advanced technology test fuels. The first test used a relatively low pressure rotary, opposed piston fuel injection pump similar to those used on some current North American engines. The second test used a relatively high pressure common rail injection pump such as those used currently on some European engines. The tests were scheduled to operate for 500 hours under severe load conditions. It can be concluded that the common-rail, high-pressure fuel pump is more sensitive to the advanced fuels than is the rotary pump in this severe duty-cycle test. Although the laboratory high frequency reciprocating rig (HFRR) tests were able to distinguish between those fuels that contained lubricity additives and those that did not, there was little correlation with pump durability results.
Technical Paper

Optimum Control of a Hydrostatic Powertrain in the Presence of Accessory Loads

2002-03-19
2002-01-1417
In off-highway applications the engine torque is distributed between the transmission (propulsion) and other accessories such as power steering, air conditioning and implements. Electronic controls offer the opportunity to more efficiently manage the control of the engine and transmission as an integrated system. This paper deals with development of a steepest descent algorithm for maximizing the efficiency of hydrostatic transmission along with the engine in the presence of accessory load. The methodology is illustrated with an example. The strategy can be extended to the full hydro-mechanical configuration as required. Applications of this approach include adjusting for component wear and intelligent energy management between different accessories for possible size reduction of powertrain components. The potential benefits of this strategy are improved fuel efficiency and operator productivity.
Technical Paper

Application of Computational Fluid Dynamics Analysis in Improving Valve Design

2002-03-19
2002-01-1397
Computational Fluid Dynamics (CFD) analysis software is being developed by many companies and it is a valuable tool in designing hydraulic components. CFD analysis can provide accurate predictions of pressure drop in fluid flow paths and offer insight into the primary source of losses. When used in conjunction with solid modeling design software, the process of optimizing a design can be accomplished much quicker, reducing development costs and time. This paper presents a CFD analysis of an existing valve design and compares it to an improved design. The source of the primary losses of the existing valve will be identified which will lead to modifications to design features that minimize those losses. These modifications will be modeled and analyzed for predicted improvements. Pressure drop tests will be conducted on the original design to verify the analysis. Internal pressure loading of valve parts cannot easily be determined by testing.
Technical Paper

Advanced Performance of Metallic Converter Systems Demonstrated on a Production V8 Engine

2002-03-04
2002-01-0347
It has been shown within the catalyst industry that the emission performance with higher cell density technology and therefore with higher specific geometric area is improved. The focus of this study was to compare the overall performance of high cell density catalysts, up to 1600cpsi, using a MY 2001 production vehicle with a 4.7ltr.V8 engine. The substrates were configured to be on the edge of the design capability. The goal was to develop cost optimized systems with similar emission and back pressure performance, which meet physical and production requirements. This paper will present the results of a preliminary computer simulation study and the final emission testing of a production vehicle. For the pre-evaluation a numerical simulation model was used to compare the light-off performance of different substrate designs in the cold start portion of the FTP test cycle.
Technical Paper

CVT Split Power Transmissions, A Configuration Versus Performance Study with an Emphasis on the Hydromechanical Type

2002-03-04
2002-01-0589
Split power transmissions are often a viable power path for continuously variable powertrains. The planetary gear set is the central mechanism of these powerpaths which creates the possibility for numerous configurations. Determining the right configuration for a specific application can thus be complicated if the designer does not have an easy way to evaluate each configuration. This paper will address this issue. The different split power configurations are explored. Speed ratio and torque ratio formulas for the different configurations are introduced. An efficient and simple method to determine positive and negative power flow is also demonstrated. The development of tractive effort curves is discussed as a methodology to determine the theoretical performance of any configuration with an emphasis on the use of hydraulics as the variator.
Technical Paper

CO2 Pump for the Space Station Advanced Atmosphere Revitalization Subsystem

2001-07-09
2001-01-2418
The current operation of the International Space Station (ISS) calls for the oxygen used by the occupants to be vented overboard in the form of CO2, after the CO2 is scrubbed from the cabin air. Likewise, H2 produced via electrolysis in the oxygen generator is also vented. NASA is investigating the use of the Sabatier process to combine these two product streams to form water and methane. The water is then used in the oxygen generator, thereby conserving this valuable resource. One of the technical challenges to developing the Sabatier reactor is transferring CO2 from the Carbon Dioxide Removal Assembly (CDRA) to the Sabatier reactor at the required rate, even though the CDRA and the Sabatier reactor operate on different schedules. One possible way to transfer and store CO2 is to use a mechanical compressor and a storage tank.
Technical Paper

Real-Time Transient and Steady-State Measurement of Oil Consumption for Several Production SI-Engines

2001-05-07
2001-01-1902
Real-time transient and steady-state oil consumption were measured on three SI-engines, applying two different ring-packs to each engine. Testing of multiple engines enables an assessment of the engine-to-engine variability in oil consumption. Testing of multiple ring-packs on each engine enables an assessment of the ring-pack-to-ring-pack variability in oil consumption. The oil consumption was measured by the Southwest Research Institute (SwRI) novel developed SO2-tracer technique, referred to as RTOC-III. An interesting finding is that the testing shows low engine-to-engine and ring-pack-to-ring-pack variability, in both steady-state, as well as in transient oil consumption. This suggests that the RTOC-III system did not introduce significant variability to the data. The testing results are experimental verification of a design and simulation exercise, in a field of scarcely published literature.
Technical Paper

Study of Modern Application Strategies for Catalytic Aftertreatment Demonstrated on a Production V6 Engine

2001-03-05
2001-01-0925
A study was performed to develop optimum design strategies for a production V6 engine to maximize catalyst performance at minimum pressure loss and at minimum cost. Test results for an advanced system, designed to meet future emission limits on a production V6 vehicle, are presented based on FTP testing. The on-line pressure loss and temperature data serves to explain the functioning of the catalyst.
Technical Paper

Fuel Lubricity: Statistical Analysis of Literature Data

2000-06-19
2000-01-1917
A number of laboratory-scale test methods are available to predict the effects of fuel lubricity on injection system wear. Anecdotal evidence exists to indicate that these methods produce poor correlation with pump wear, particularly for fuels that contain lubricity additives. The issue is further complicated by variations in the lubricity requirements of full-scale equipment and the test methodologies used to evaluate the pumps. However, the cost of performing full-scale equipment testing severely limits the quantity of data available for validation of the laboratory procedures at any single location. In the present study, the technical literature was reviewed and all previously published data was combined to form a single database of 175 pump stand results. This volume of data allows far more accurate statistical analysis than is possible with tests performed at a single location. The results indicate differences in the effectiveness of the standardized laboratory-scale methods.
X